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Abstract
Fully homomorphic encryption (FHE) is a promising cryp-
tographic solution that enables computation on encrypted
data, but its adoption remains a challenge due to steep perfor-
mance overheads. Although recent FHE architectures have
made valiant efforts to narrow the performance gap, they
not only have massive monolithic chip designs but also only
target small ML workloads. We present Cinnamon, a frame-
work for accelerating state-of-the-art ML workloads that
are encrypted using FHE. Cinnamon accelerates encrypted
computing by exploiting parallelism at all levels of a pro-
gram, using novel algorithms, compilers, and hardware tech-
niques to create a scale-out design for FHE as opposed to
a monolithic chip design. Our evaluation of the Cinnamon
framework on small programs shows a 2.3× improvement
in performance compared to prior state-of-the-art designs.
Further, we use Cinnamon to show for the first time the
scalability of large ML models such as the BERT language
model in FHE. Cinnamon achieves a speedup of 36, 600× com-
pared to a CPU bringing down the inference time from 17
hours to 1.67 seconds thereby enabling new opportunities for
privacy-preserving machine learning. Finally, Cinnamon’s
parallelization strategies and architectural extensions reduce
the required resources per-chip leading to a 5× and 2.68×
improvement in performance-per-dollar compared to state-
of-the-art monolithic and chiplet architectures respectively.

CCS Concepts: • Security and privacy→ Cryptography;
• Computer systems organization → Parallel archi-
tectures; • Computing methodologies → Parallel al-
gorithms.

Keywords: Fully Homomorphic Encryption, Encrypted AI,
Parallelism, Accelerators
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1 Introduction
Datacenters today provide the computational backbone for
much of the world’s processing needs and support for execut-
ing analytics and machine learning workloads on the cloud.
Organizations often run such workloads on sensitive user
data to extract valuable insights. Unfortunately, computing
on sensitive data in the cloud is vulnerable to attacks from
data breaches [12, 23, 61, 63] to side channels [11, 40, 41, 44].
Furthermore, as privacy becomes an important pillar of our
society, restrictive regulations [20, 26] threaten to limit the
use of private data. Case in point, Italy’s temporary ban on
ChatGPT [45, 46, 52]. Consequently, it is increasingly im-
portant to identify new methods of outsourcing data for
computation without compromising sensitive data.

Fully homomorphic encryption (FHE) [10, 15] is a promis-
ing cryptographic technique that allows generic computation
on encrypted data. With FHE, clients can securely offload
their computation on a private input 𝑥 to a cloud by encrypt-
ing 𝑥 and sending the encryption Enc(𝑥) to the untrusted
cloud provider. The cloud can apply a function 𝑓 on Enc(𝑥)
to obtain Enc(𝑓 (𝑥)) and return this result to the client. Fi-
nally, the client decrypts the result to get 𝑓 (𝑥). Although FHE
has many compelling applications, such as secure computa-
tional genomics and private database analytics [8, 29, 37, 54],
privacy-preserving machine learning is a major drive behind
its increasing popularity [25, 34, 42, 43, 65].

Despite its strong privacy guarantees, FHE’s biggest draw-
back is its significant performance overhead. Today, comput-
ing FHE on CPUs with state-of-the-art libraries [1, 2, 5, 58]
imposes steep overheads of over four orders of magnitude
compared to its plaintext counterpart. In the space of ma-
chine learning FHE programs, there are twoworkload charac-
teristics that affect performance. First, larger inputs increase
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Figure 1. Growth of ML Models and FHE Architectures.

the number of ciphertexts required for encryption (i.e. wider
programs). Second, advanced model architectures lead to
complex FHE computation with higher multiplicative depth
(i.e., deeper programs), which require more bootstrapping.
Bootstrapping is an expensive ciphertext maintenance oper-
ation which can account for about 70-80% of the execution
time of FHE programs.
Although prior work has proposed several solutions tar-

geting FPGAs, GPUS, and ASICs that aim to alleviate some
of the overheads[22, 33, 35, 36, 38, 39, 55, 56, 59, 64], they
have only demonstrated the feasibility of FHE on small ML
programs. For example, the largest workload accelerated by
recent architectures [38, 56] is ResNet20 [31, 43] inference.
This model is small enough for its inputs and activations
to be encrypted using a single ciphertext, and its computa-
tion requires about fifty bootstraps. Despite targeting such
a small application, FHE architectures have gravitated to-
wards massive chip designs with a quarter to half a gigabyte
of on-chip caches.

Looking into the landscape of ML models in recent years,
the unsatisfied appetite for large models is pushing the limits
of even plaintext architectures [51]. Figure 1 shows the scal-
ing of MLmodels compared to the cache capacity on the chip
of FHE architectures, which shows that FHE architectures
cannot keep up with the growth inMLmodel parameters due
to their significant on-chip cache requirements. In general,
larger ML models have both larger input sizes and more com-
plex computation. For example, a transformer-based model
like BERT Base [19] is wider and requires 3 and 12 cipher-
texts to encrypt 128 and 512 tokens, respectively. BERT is
also significantly deeper with each BERT inference requiring
thousands of bootstraps. For example, a 128 token encrypted
BERT inference requires about 1,400 bootstraps. Sadly, even
prior massive chip designs [35, 36, 56] only optimize for per-
forming a bootstrap operation on one ciphertext at a time.
We present Cinnamon, a framework for scale-out en-

crypted computing that aims to accelerate large, state-of-the-
art models. Instead of building even larger monolithic chips
to meet the compute, cache, and memory demand, Cinna-
mon explores an alternative approach to scale-out encrypted

computing by exploiting parallelism. From our observations
about machine learning FHE workload characteristics, we
identify two levels of parallelism that are suitable for a scale-
out design: program-level and limb-level parallelism.

As larger models lead to wider programs requiring a larger
number of ciphertexts, it opens up optimization opportu-
nities via program-level parallelism, i.e. parallelism across
ciphertexts. Cinnamon introduces a Python domain-specific
language (DSL) for FHE that introduces concurrent execu-
tion streams, and users can use this abstraction to exploit
program level parallelism. Cinnamon’s compiler uses this
information as well as information about the underlying
hardware architecture to distribute streams across chips, en-
abling highly efficient parallel execution.
Larger models also lead to deeper programs and more

bootstrap operations. As each ciphertext is very large, Cinna-
mon’s second focus to parallelize bootrapping is to find par-
allelization opporunities within individual ciphertexts. Our
first insight is to use a partitioning strategy called limb-level
parallelism. Limbs are largely independent components of a
ciphertext and introduce inherent parallelism for many FHE
primitives. However, we find that key switching [28], a very
common but expensive [36, 38, 55, 56] FHE sub-functionality,
exhibits a large degree of dependencies across limbs. To
resolve the communication bottleneck arising from these
cross-limb dependencies, Cinnamon introduces novel paral-
lel keyswitching algorithms and compiler optimizations that
lead to a 32× reduction from 16TB/s to only 512GB/s in the
bandwidth required to implement limb level parallelism. This
algorithmic breakthrough enables Cinnamon to parallelize
large FHE computation across multiple substantially smaller
chips with smaller and fewer functional units and smaller
on-chip caches (56MB). To further reduce the on-chip re-
sources, Cinnamon also introduces a compact architectural
implementation of a functional unit for base conversion.
We evaluate Cinnamon through simulations for perfor-

mance and RTL synthesis with a commercial PDK and SRAM
compiler for area and power. We first show how Cinna-
mon’s parallelization techniques can be used to improve
the performance of small ML models by 2.3× compared to
the state-of-the-art design. We further show for the first
time the scalability of Cinnamon on large ML models such
as the BERT language model. Cinnamon achieves a speedup
of 36, 600× compared to a 48-core CPU bringing down in-
ference time from 17 hours to 1.67 seconds enabling new
opportunities for privacy-preserving machine learning. Cin-
namon’s limb-level parallelism and base conversion unit also
reduce the per chip cache, compute, and communication re-
sources by 4.82×, 8.3×, and 6× respectively compared to
a monolithic chip design, thereby eliminating the need to
architect large FHE architectures. Finally, we highlight the
impact of area constraints on the manufacturing process
and demonstrate that Cinnamon can lead to 5× and 2.68×
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improvement in performance-per-dollar compared to state-
of-the-art monolithic and chiplet architectures respectively.
Overall, Cinnamon makes the following contributions:
• A compiler design for enabling program-level parallelism
for FHE programs, including a Python DSL and a polyno-
mial IR for expressing concurrent execution streams to
scale-out performance across multiple chips.

• A novel partitioning strategy for limb-level parallelism
and a limb-level IR that significantly reduces communica-
tion requirements across chips and enables FHE architec-
tures with small cache sizes.

• A new base conversion unit architecture that shrinks the
compute resources required by FHE architectures.

• The demonstration of practical inference time for lan-
guage models such as BERT on FHE architectures.

• The evaluation of Cinnamon across multiple metrics in-
cluding, performance, area, and cost.

• The first end-to-end open source framework for encrypted
computing, which we will release after publication.

2 Background on Fully Homomorphic
Encryption

In this paper, we focus on the CKKS [15] encryption scheme,
a popular FHE scheme for encrypted computing on real num-
bers. CKKS can efficiently batch multiple plaintext values
into a single ciphertext. Operations on this ciphertext will
affect all of the underlying plaintext values. Figure 2 shows
a high level overview of plaintexts and ciphertexts in CKKS.
To encrypt, several plain text values are first batched into
a vector ( 1 ) and then encrypted into a ciphertext ℭ, com-
posed of a pair of polynomials (C0,C1) ( 2 ) that are elements
of a polynomial ring over an integer modulus with a ring
dimension 𝑁 . For a ring dimension 𝑁 , the polynomial de-
gree is 𝑁 − 1. CKKS supports three kinds of homomorphic
operations on ciphertext values - addition, multiplication
and rotation. These operations are composed of arithmetic
over the polynomial ring.
Limbs: The polynomial rings in FHE require a very large
integer modulus, alos known as the ciphertext modulus. This
makes the coefficients of the ciphertext polynomials C0,C1

very large. Modular arithmetic over such large integers is
extremely inefficient. However, if the ciphertext modulus is
strategically chosen to be the product of a set of ℓ smaller
moduli {𝑞0, 𝑞1 . . . 𝑞ℓ−1}, then, the Residue Number System
(RNS) [6] can be used to uniquely represent a polynomial C
as a tuple of ℓ polynomials {C mod 𝑞0,C mod 𝑞1, . . . ,C
mod 𝑞ℓ−1}, each with much smaller coefficients. We call
the set of moduli 𝑄 = {𝑞0 . . . 𝑞ℓ−1} the RNS basis and the
set of decomposed polynomials C𝑄 = {C𝑞0 , . . . ,C𝑞ℓ−1 } =

C{𝑞0,𝑞1 ...𝑞ℓ−1 } limbs. In 3 from Figure 2, each column depicts
a limb. The figure uses a 39 bit ciphertext modulus and 7 bit
𝑞𝑖 ’s. In practice, the ciphertext modulus can be 1000s of bits
wide and the 𝑞𝑖 ’s are machine word sized.
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Figure 2. CKKS Plaintexts and Ciphertexts

Most polynomial operations are data parallel over the
limbs. For example, polynomial additions work as shown:
XQ +YQ = {X𝑞0 +Y𝑞0 ,X𝑞1 +Y𝑞1 , . . . ,X𝑞ℓ−1 +Y𝑞ℓ−1 }. Similarly,
operations like NTT, multiplication and automorphism are
data parallel across limbs. The number of limbs of a cipher-
text is also called the level of the ciphertext.
NTT: The Number Theoretic Transform (NTT) is the ana-
log of the Fast Fourier Transform (FFT) in a prime number
field. Similar to FFT, NTT performs a convolution over the
coefficients of a polynomial and speeds up modular polyno-
mial multiplication by transforming polynomials from the
coefficient domain to the evaluation domain. The inverse
NTT (INTT) reverses this transformation. Unless explicitly
stated, all polynomials are assumed to be in the evaluation
domain by default. We use the superscript X̄ to represent a
polynomial X in the coefficient domain.
Automorphism: The automorphism operation implements
permutations over the polynomial coefficients. It is used to
implement ciphertext rotation.
Base conversion: Base Conversion [6] converts a poly-
nomial from one RNS basis 𝑄 = {𝑞0, . . . , 𝑞ℓ−1} to another
RNS basis 𝑃 = {𝑝0, . . . , 𝑝𝑚−1}. Thus the polynomial C̄𝑄 =

{C̄𝑞0 , . . . , C̄𝑞ℓ−1 } is transformed to C̄𝑃 = {C̄𝑝0 , . . . , C̄𝑝𝑚−1 }.
The equation below shows the calculation of an output limb
C̄𝑝𝑘 . Here 𝑓𝑗𝑘 are scalar base conversion factors.

C̄𝑝𝑘 =

ℓ∑︁
𝑗=0

(C̄𝑞 𝑗
· 𝑓𝑗𝑘 mod 𝑝𝑘 )

Unlike other operations, base conversion is not data parallel
across limbs. Also, base conversion can be performed only
in the coefficient representation.
Mod Up and Mod Down: The mod up operation converts
a polynomial XS from a smaller RNS basis 𝑆 to a larger RNS
basis 𝑇 . The mod down operation converts a polynomial
XS∪E from a larger RNS Basis 𝑆 ∪ 𝐸 to a smaller basis 𝑆 ,
followed by a multiplication by a scalar factor. The mod up
and mod down operations are described in Figure 3.
Digits: Digits are disjoint partitions of the limbs
of a polynomial. For example, consider a polynomial
C𝑄 = {C𝑞0 ,C𝑞1 , . . . ,C𝑞5 }. One possible 3 digit parti-
tion of C𝑄 is {{C𝑞0 ,C𝑞1 }, {C𝑞2 ,C𝑞3 }, {C𝑞4 ,C𝑞5 }}. Each digit
can be individually base converted to another RNS ba-
sis. For example, the digit {C𝑞2 ,C𝑞3 } can be converted
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1 def modUp (X𝑆 ):
2 X̄𝑆 = INTT(X𝑆 )
3 Ȳ𝑇 = BCONV(X̄𝑆 )
4 Y𝑇 = NTT(Ȳ𝑇 )
5 return Y𝑇

1 def modDown (X𝑆∪𝐸 ):
2 X̄𝐸 = INTT (X𝐸 )
3 Ȳ𝑆 = BCONV (X̄𝐸 )
4 Y𝑆 = NTT (Ȳ𝑆 )
5 return (X𝑆 −Y𝑆 ) ∗ 𝑓𝑆

Figure 3. Mod Up and Mod Down functions

1 # Inputs: input polynomial C𝑄 , the number of
2 # digits 𝑑 and evaluation key EvalKey
3 def keyswitch(C𝑄 , 𝑑, EvalKey):
4 # D can be indexed 0, . . . , 𝑑 − 1
5 𝐷 = SplitIntoDigits(𝑄, d)
6 𝐸 = GetExtensionBasis(𝑄, d)
7
8 F0𝑄∪𝐸 , F1𝑄∪𝐸 = 0, 0
9 for 𝑖 in range(𝑑):
10 B𝑄∪𝐸 = modUp (C𝐷 [𝑖 ] )
11 F0𝑄∪𝐸 += B𝑄∪𝐸 ∗ EvalKey[𝑖 ] [0]𝑄∪𝐸
12 F1𝑄∪𝐸 += B𝑄∪𝐸 ∗ EvalKey[𝑖 ] [1]𝑄∪𝐸
13
14 Ĉ0𝑄 , Ĉ1𝑄 = modDown(F0𝑄∪𝐸 ), modDown(F1𝑄∪𝐸 )
15 return Ĉ0𝑄 ,Ĉ1𝑄

Figure 4. Keyswitch Routine

to a new basis 𝑃 = 𝑝0, 𝑝1, . . . 𝑝7 to obtain: q2q3 C𝑃 =

(q2q3 C𝑝0 ,
q2q3 C𝑝1 , . . . ,

q2q3 C𝑝7 ). We use the label 𝑞𝑖𝑞 𝑗 to in-
dicate the digit to which a value corresponds. Note that
q2q3 C𝑃 ≠ C𝑃 . Instead, C𝑃 = q0q1 C𝑃 × 𝑞0𝑞1 𝑓 + q2q3 C𝑃 × 𝑞2𝑞3 𝑓 +
q4q5 C𝑃 × 𝑞4𝑞5 𝑓 , where each 𝑞𝑖𝑞 𝑗 𝑓 is a scalar factor.
Keyswitching: Keyswitching [28] homomorphically con-
verts a ciphertext encrypted using secret key 𝑘 to a cipher-
text encrypted under a different key 𝑘 ′ using an evaluation
key EvalKey𝑘→𝑘 ′ . It is a major ciphertext maintenance sub-
routine required to implement homomorphic rotation and
multiplication. Figure 4 describes the keyswitching kernel
and Figure 5 shows how homomorphic rotation and multi-
plication internally use keyswitching.

Keyswitching works by splitting the input polynomial𝐶𝑄

into 𝑑 digits and computing a mod up of each digit to the
basis 𝑄 ∪ 𝐸 to compute an inner product with the evalkey
EvalKey. Here, 𝐸 is a temporary extension basis such that
𝐸 ∩𝑄 = 𝜙 . Finally, the inner product undergoes a mod down
to the original basis 𝑄 . Keyswitching is a computationally
expensive subroutine and accelerating keyswitching is the
focus of most FHE accelerators [35, 36, 39, 56].
Multiplicative Budget: The multiplicative budget is an in-
trinsic property of a ciphertext. Every ciphertext has a finite
multiplicative budget and every multiplication operation
performed on a ciphertext consumes some of the available
budget. Once the multiplicative budget has been exhausted,
any further computation requires this budget to be refreshed
using an expensive homomorphic procedure called boot-
strapping.

1 # Inputs: Ciphertexts 𝐴, 𝐵

2 def HMultiply(𝐴, 𝐵):
3 C0 = A[0] ∗ B[0]
4 C1 = A[0] ∗ B[1] + A[1] ∗ B[0]
5 C2 = A[1] ∗ B[1]
6 Ĉ0,Ĉ1 = keyswitch(C2, 𝑑, EvalKey)
7 return C0 + Ĉ0, C1 + Ĉ1
8
9 # Inputs: Ciphertext 𝐴, rotation amount 𝑟

10 def HRotate(𝐴, 𝑟 ):
11 C0 = automorphism(A[0], 𝑟 )
12 C1 = automorphism(A[1], 𝑟 )
13 Ĉ0,Ĉ1 = keyswitch(C1, 𝑑, EvalKey)
14 return C0 + Ĉ0, Ĉ1

Figure 5. Homomorphic Multiplication and Rotation
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Bootstrapping [13, 24, 30]: The bootstrapping procedure
raises a ciphertext to the highest multiplicative budget and
then further processes it. This further processing involves
several homomorphic matrix-vector multiplications and ho-
momorphic polynomial evaluation. Bootstrapping itself con-
sumes some part of the total multiplicative budget, leav-
ing the remainder for application processing. Bootstrapping
is an extremely expensive operation as it requires several
keyswitch operations and often comprises upto 80% of the
execution time of FHE programs. Thus, we pay special at-
tention to bootstrapping and keyswitching in this work.

3 Motivation
In this section, we perform a detailed study of the challenges
and opportunities of computing larger ML models in FHE.

3.1 Larger Models Lead to Wider FHE Programs
LargeMLmodels lead towider FHE programs requiringmore
chiphertexts. This is because larger ML models have a larger
number of input and activation values which cannot fit into
a single ciphertext and instead require multiple ciphertexts
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to encrypt. This opens up the opportunity for program-level
parallelism, or parallelism across multiple ciphertexts.
Each of these ciphertexts will have to be bootstrapped

when its multiplicative budget is exhausted. As bootstrap-
ping is the most expensive FHE operation, we focus on the
bootstrapping of multiple ciphertexts in Figure 6, explor-
ing how different hardware resources affect performance.
The baseline is a single-chip Cinnamon with 1TB/s HBM,
a 256MB register file and four compute clusters (details of
Cinnamon are presented in section 5). This configuration is
representative of prior FHE accelerators. To scale compute,
we tune the number of compute clusters. We also show the
results of recent proposals [38, 56] for one bootstrap.
For a single bootstrap, we see that contemporary 64MB

and 128MB caches found in the cache-heavy GPUs and CPUs
are insufficient. Instead, a 256MB cache, as adopted by most
recent proposals, is a balanced design. Scaling cache capacity
further to 1GB yields smaller performance gains of 28%. As
the number of ciphertexts to be bootstrapped increases, we
see three major trends. First, with the default compute, per-
formance degrades linearly for the smaller cache capacities
with the number of bootstraps. At 256MB cache size, the
execution time of a single bootstrap is about 3.8ms but in-
creases to 32ms for eight bootstraps. However, a larger cache
capacity can improve the performance of parallel bootstraps.
There is 5.63× improvement by increasing cache capacity
from 256MB to 1GB for eight bootstraps, while the improve-
ment is only 1.28× for a single bootstrap. Note that 1GB
of cache represents a sweet spot in the design – increasing
the cache capacity further does not yield additional benefits.
This is because bootstraps share plaintext matrices and eval-
uation keys, and 1GB is enough to fit this metadata within
the cache and avoid spills. Furthermore, increasing compute
can lead to more performance benefits. For example, at eight
bootstraps and 1GB cache capacity, there is a 1.62× speedup
by doubling the number of clusters to eight. Since bootstrap
operations on independent ciphertexts can be fully paral-
lelized, replicating all the resources can potentially lead to
linear speedups for FHE programs.

This analysis reveals that FHE computing is stuck between
a rock and a hard place. On the one hand, larger models incur
linear slowdown on current architectures as independent
bootstraps have to be computed sequentially. On the other
hand, improving performance further requires even more
hardware resources. Hence, we need to find ways to exploit
the inherent parallelism of larger models to avoid building
even larger monolithic chips.

3.2 Larger Models Lead to Deeper FHE Programs
Larger models also lead to deeper programs that require
more bootstraps. Hence, improving the performance of boot-
strapping is key to improving performance. Since ciphertexts
are composed of polynomial limbs, there are two poten-
tial parallelization strategies: coefficient-level and limb-level.

Prior architectures have primarily focused on coefficient-
level parallelism and developed techniques requiring com-
plex Networks-on-Chip with 10-20TB/s of bandwidth to sup-
port the all-to-all dependencies introduced by NTT and auto-
morphism. Thus, scaling coefficient level parallelism further
on a single chip is challenging and scaling it across chips or
chiplets is even harder.

Fortunately, FHE ciphertexts exhibit a second kind of par-
allelism called limb-level parallelism. This is a good candidate
for parallelism because most FHE operations do not have any
dependencies at the limb level. However, keyswitching, an
integral part of ciphertext multiplication, rotation and boot-
strapping, introduces several dependencies across limbs. Due
to the challenges associated with managing these dependen-
cies, most prior accelerators either do not pursue this type
of parallelism at all, limiting themselves to just coefficient
level parallelism, or use large communication bandwidth on
the order of multiple TB/s to deal with these dependencies.
This requirement of very high communication bandwidth
for both coefficient and limb level operations steered prior
work towards very largemonolithic architectures. As a result,
monolithic FHE architectures require large 256MB-512MB
caches and large areas for functional units since all cache
and compute resources to process large ciphertexts (each
about 20MB) have to exist within a single chip.
One prior work CiFHER [38], identified concerns with

building large chips and proposed using limb-level paral-
lelism to split the resources needed for FHE across multiple
FHE chiplet cores on a single package. CiFHER resolves de-
pendencies across chiplets by broadcasting the limbs to all
chiplets and represents the current state of the art for limb
level parallelism. This approach is feasible for a multicore
design where the memory bandwidth on a per-core basis is
limited, thereby becoming the limiting factor in performance
instead of communication. However, scaling performance
with this approach is not sustainable as merely increasing
the memory bandwidth leads to an unbalanced design that is
severely bottlenecked on network bandwidth. For instance,
if the per-chip memory bandwidth is scaled to 2TB/s, as
required by most FHE architectures, avoiding the network
bottleneck would require an unattainable 16TB/s bandwidth.
While limb-level parallelism holds the promise of signifi-

cantly improving the performance of bootstrapping by en-
abling the scaling out of FHE workloads to multiple chips
while simultaneously reaping the benefits offered by smaller
chips, properly extracting its full potential has been elusive.
Further improvements require algorithmic innovations to
reduce the high network bandwidth requirements.

4 Design
The goal of Cinnamon is to provide a framework for accel-
erating large ML workloads in FHE using a holistic cross-
stack approach that optimizes for parallel computation across
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1. Parallel([0:8])
2. c3[0] = c1[0] + c2[0]
3. c3[1] = c1[1] + c2[1]

4. Parallel([0:4]) 
5. c4[0] = c3[0] << 1
6. c4[1] = c3[1] << 1
7. (s0,s1) = 

Keyswitch(c4[1])
8. c4[1] = s1
9. c4[0] = c4[0] + s0

10. Parallel([4:8])
11. c5[0] = c3[0] * pt
12. c5[1] = c3[1] * pt
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level IR with program-level 

parallelism

Cinnamon
Compiler
Pass

c2[0].p0

Broadcast
Keyswitch

Program-level and limb-level parallelism 
with input broadcast keyswitch across 

streams 

1. c1 = CiphertextInput(Level=8)
2. c2 = CiphertextInput(Level=8)
3. c3 = c1 + c2
4.
5. # Stream Function
6. def StreamFn (streamId,c3):
7.  if streamId == 0:
8.    c4 = c3 << 1
9.    Output(c4)
10. elif streamId == 1:
11. pt = PlaintextInput(Level=8)
12.   c5 = c3 * pt
13.   Output(c5)
14.
15. # Create 2 parallel streams each      

of size 4
16. CinnamonStreamPool(

streamSize=4, numStreams=2,
func=StreamFn, args=(c3))
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Figure 7. Cinnamon framework overview

FHE algorithms, the compiler, and the hardware architecture
while minimizing cost.

4.1 Overview
Figure 7 shows an overview of the Cinnamon framework.
Cinnamon is composed of four main components: 1. a Cin-
namon DSL for ease of programming, 2. a polynomial-level
IR designed for program-level parallelism, 3. a limb-level
IR that facilitates program-level, limb-level, and keyswitch
parallelism on top of per-chip streams, and 4. a scale-out
hardware architecture and cycle-level scheduler that lever-
age parallelism to support efficient encrypted computing.
We describe the components of Cinnamon below.

4.2 A DSL and IR for Parallel FHE
The Cinnamon DSL is embedded in Python. It implements
FHE operations like add, multiply, rotate etc. as language
constructs. 1 from Figure 7 shows a sample program in the
Cinnamon DSL. The Cinnamon DSL also offers programmers
the capability to create concurrent execution streams, which
are programmed similar to threads or python multiprocess-
ing. Line 6 in 1 shows an example of a stream function
StreamFn. Within the function, the programmer provides
the code for each stream indexed by the variable streamId.
At line 16, the call CinnamonStreamPool(..) instantiates
the streams.
In 2 of Figure 7, the program from 1 is lowered to Cin-

namon’s polynomial IR where the ciphertext representation
is expanded to a polynomials. For example, a ciphertext ad-
dition (c1 + c2) is expanded to two polynomial additions
(c1[0] + c2[0] and c1[1] + c2[1]). The Cinnamon com-
piler also automatically distributes the concurrent streams
across the chips depending on the programmer specified
stream size and number of streams (lines 4 and 10 in 3 ). The
blue stream is placed on chips 0 − 4 and the green stream is
placed on chips 4 − 8.

4.3 Efficient Limb-level Parallelism
In steps 4 − 7 of Figure 7, Cinnamon lowers polynomial-
level representation into Cinnamon’s limb-level representa-
tion and automatically provides parallelization at this level.
Cinnamon is able to compose limb-level parallelism with
user provided program-level parallelism. This is shown by
5 and 6 in Figure 7 where ciphertext operations in the blue
and green streams are placed on the first and second groups
of four chips according to user input, and then further paral-
lelized by Cinnamon at the limb-level within each set of four
chips using the data partitioning policies described below.

4.3.1 Data partitioning. Cinnamon uses limb-level par-
titioning as it enables data parallelism across the limbs for
polynomial operations like addition, multiplication, NTT
and automorphism. For a polynomial CQ and a hardware
architecture comprised of 𝑛 chips with each chip having an
identifier 𝑐 , Cinnamon partitions CQ’s limbs across the 𝑛
chips in a modular fashion. We define the set 𝑄𝑐 = {𝑞𝑖 | 𝑖
mod 𝑛 = 𝑐}, to be the subset of the RNS basis 𝑄 handled
by chip 𝑐 . For example, if CQ has ℓ = 12 limbs and 𝑛 = 4,
then chip 𝑐 = 0 holds limbs C𝑄0 = C{𝑞0,𝑞4𝑞8 } . For concurrent
streams, the modular distribution is adjusted according to
the stream size and placement. While limb-level partition-
ing works well for many FHE operations, keyswitching is
difficult to parallelize as it introduces complex dependencies
across limbs. In the rest of this section, we describe sequential
keyswitching, the challenges with parallelizing keyswitching
and our novel algorithms for parallelizing keyswitching.
Sequential keyswitching: Figure 8a gives a high level
overview of sequential keyswitching with the help of an
example. 𝑄 = {𝑞0, 𝑞1, . . . , 𝑞11} is a basis of 12 RNS moduli
and C𝑄 are the limbs of the input polynomial C in the ba-
sis 𝑄 . We’ll call 𝑄 the initial basis. In 2 , the limbs C𝑄 are
partitioned into 𝑑 = 3 digits, represented by the three colors.
Additionally, we pick 𝐸 = {𝑞0, 𝑞1, . . . , 𝑞3} as the extension
basis, which is used temporarily for keyswitching. In 3 , the
first digit (C{𝑞0 ...𝑞3 } ) undergoes a mod up operation and is
expanded to the basis𝑄∪𝐸 resulting in q0 ...q3 C𝑄∪𝐸 . In 4 , the
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(a) (b) (c)

Figure 8. (a) Sequential keyswitching (b) Input Broadcast Keyswitching (c) Output aggregation keyswitching.

extended digit q0 ...q3 C𝑄∪𝐸 is multiplied by the two polynomi-
als of the evalkey to get two evalkey products. In 5 , 2 - 4
are repeated for the other two digits and all evalkey products
are aggregated. In 6 , the two evalkey product polynomials
under go a mod down to 𝑄 from 𝑄 ∪ 𝐸.
Challenge of parallelizing keyswitching: The challenge
in designing a limb-parallel keyswitching algorithm is min-
imizing cross chip communication, caused by the limb de-
pendencies from the base conversion operations in mod up
( 3 ) and mod down ( 6 ). A simple approach to parallelize
keyswitching [38] distributes all limbs across chips in a mod-
ular fashion and resolves cross limb dependencies by broad-
casting the input limbs of each base conversion to all the
chips. This method requires 3 broadcasts: 1 in 1 and 2 in 6
and has a very high communication overhead.
We now describe Cinnamon’s approach to keyswitching.

Cinnamon designs two novel algorithms and compiler op-
timizations to reduce the overhead of keyswitching. The
idea behind these new algorithms is to limit the inter chip
communication required to just one point in the keyswitch:
the beginning (mod up) or the end (mod down), and exploit
reordering and batching across multiple keyswitches.
Input broadcast keyswitching: This is Cinnamon’s first
parallel keyswitching algorithm. It limits communication
to just the mod up operation of the keyswitch. Intuitively,
our insight is that by duplicating the extension limbs across
chips, we can eliminate the need for the broadcasts required
in the mod down ( 6 ) and complete the keyswitch with a
single broadcast at the mod up ( 1 ).
We explain this algorithm via an example shown in Fig-

ure 8b. Initially, the limbs of the input polynomial C𝑄 are
modularly distributed across the chips, with each chip 𝑐 pos-
sessing C𝑄𝑐

. In 1 , the limbs of the input polynomial C𝑄 are
broadcast so that every chip has a copy of all limbs C𝑄 . We
now zoom into chip 𝑐 = 0. In 2 , C𝑄 is split into three digits

like in the sequential case. In 3 , the first digit is expanded to
the basis 𝑄0 ∪ 𝐸 = {𝑞0, 𝑞4, 𝑞8, 𝑞0, 𝑞1, 𝑞2, 𝑞3}. Thus, the output
limbs of the base conversion operation in the initial basis are
distributed but the output limbs in the extension basis are
duplicated across the chips. In 4 , the digits are multiplied
by the evalkey. In 5 , all the digits’ evalkey products are
aggregated and in 6 , they undergo a mod down operation
from the basis 𝑄0 ∪ 𝐸 to 𝑄0 = {𝑞0, 𝑞4, 𝑞8}. The mod down
operation in 6 requires all extension limbs. Since the ex-
tension limbs 𝐸 were duplicated in steps 3 - 5 , all chips
already have all extension limbs and no broadcast is required
in 6 . As chip 𝑐 = 0 ends up with limbs in the basis 𝑄0, no
more communication is required. The same steps occur on
the other chips in parallel.

This algorithm is equivalent to the sequential keyswitch-
ing algorithm. This is because 3 , 4 and 5 are limb-wise
operations (i.e., no dependencies across different limbs). In 6 ,
the cross-limb dependencies are only in the extension limbs.
Therefore, instead of splitting the extension limbs and then
broadcasting them before 6 , we locally compute the exten-
sion limbs at the beginning of 3 . Since each chip retains all
necessary basis from 3 onwards, 6 can be computed with-
out further communication. Overall, this approach trades-off
some duplication of compute and on chip storage across the
chips but requires only a single broadcast at 1 .
Output aggregation keyswitching: This is Cinnamon’s
second parallel keyswitching algorithm. This algorithm re-
quires inter chip communication only at the end of the
keyswitch. In this keyswitching algorithm, parallelization
happens at the digit-level instead of at the limb-level. The
idea is to treat the initial partition of limbs across the chips
as the digits for keyswitching. We explain the algorithm via
the example in Figure 8c. As we have 𝑛 = 4 chips, we use
𝑑 = 𝑛 = 4 digits. We focus on chip 𝑐 = 0, which has the first
digit C𝑄0 = {𝑞0, 𝑞4, 𝑞8}. Since we chose a digit partition such
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that all chips already have the required limbs, no broadcast
is required. In 1 , the first digit undergoes a mod up to the
basis 𝑄 ∪ 𝐸 = {𝑞0, 𝑞1, . . . 𝑞11, 𝑞0, 𝑞1, 𝑞2} and in 2 , it is multi-
plied by the evalkeys. In 3 , the evalkey product undergoes
a mod down to the basis 𝑄 . Since each digit’s evalkey prod-
ucts reside across the chips, the chips perform an aggregate
and scatter operation over the network to aggregate and
distribute the sum’s limbs in a modular fashion ( 4 ). This
reordering of the mod down and aggregation is valid because
these two operations are commutative.

While we show𝑑 = 4 digits here, it is possible to generalize
this algorithm to any multiple of 𝑛 digits by further partition-
ing the digits local to each chip. Overall, this keyswitching
algorithm requires a communication of 2 aggregations.While
this is strictly worse than both the previous algorithms if it
is run a single time, we show how this can be batched across
multiple keyswitches in the next section.
Note that Cinnamon’s keyswitching algorithms only

exploit reordering of operations and digit selection of
keyswitching. The digit selection doesn’t affect keyswitch-
ing as implementations with all possible choices of digits are
interchangeable. Thus Cinnamon’s keyswitching algorithms
do not have any additional effects on noise or multiplicative
levels of the keyswitching algorithms.
CinnamonKeyswitch Pass:Our analysis of FHE programs
shows that it is possible to reduce the inter chip communica-
tion from keyswitching by reordering and batching commu-
nication across multiple keyswitches. This is similar to the
hoisting techniques described in [28]. In this section, we will
show how Cinnamon’s new keyswitching algorithms signif-
icantly reduce inter chip communication when coupled with
Cinnamon’s compiler optimizations. We focus our analysis
on two very frequent patterns that appear in bootstrapping
and several linear algebra kernels: multiple rotations on a
single ciphertext and multiple rotations followed by aggre-
gation.
Let’s consider the first pattern: multiple rotations on a

ciphertext. Assume there are 𝑟 different rotations on the same
ciphertext. In this case, we use Input Broadcast Keyswitching.
Each of the 𝑟 key switches would require a broadcast at 1 .
However, this can be optimized to just 1 broadcast for the
whole batch of 𝑟 keyswitches by exploting commutativity
to perform reordering and batching. Thus, Input Broadcast
Keyswitching requires just 1 broadcast for all 𝑟 rotations.
Similarly, Output Aggregation Keyswitching optimizes

the second pattern: multiple rotations followed by aggre-
gation. Assume 𝑟 different ciphertexts are rotated and then
aggregated. Here, we use Output Aggregation Keyswitching
as it only requires aggregations at 4 . Batching and reorder-
ing optimizations can optimize this to just 2 aggregations
across the whole batch of 𝑟 keyswitches. Thus, Output Ag-
gregation Keyswitching also requires just 2 aggregations for
all 𝑟 rotations.

Coupling the reordering and batching optimizations with
Cinnamon’s new keyswitching algorithms significantly re-
duces the communication overhead of keyswitching by amor-
tizing it over multiple keyswitch operations. For example,
the communication cost of the baby-step giant-step (BSGS)
algorithm [14], which is used for large matrix of multiplica-
tion in FHE, can be reduced from 𝑂 (

√
𝑛) to 𝑂 (1) - just one

broadcast and two aggregations. This is because the BSGS al-
gorithm contains patterns that can be optimized using Input
Broadcast and Output Aggregation Keyswitching.
In the Cinnamon compiler, we implement a pass to auto-

matically detect program patterns where our keyswitching
algorithms can significantly improve communication costs,
choose the appropriate parallel keyswitching algorithm and
perform reordering optimizations. As we will show in Sec-
tion 7.3, Cinnamon’s keyswitch compiler pass results in a 7×
reduction in the data communication per bootstrap, which
can be further improved to 9.81× by combining it with the
Cinnamon compiler’s program parallelism constructs.

4.4 Lowering to ISA and Scheduling
The Cinnamon compiler lowers the limb level representation
to the Cinnamon ISA (described in section 4.6) using Belady’s
min [7] to allocate registers and it inserts loads and stores
as early as possible.

4.5 Cinnamon Scale-out Architecture
We now describe Cinnamon’s scale-out architecture for FHE
that leverages our algorithmic and compiler techniques to
parallelize ciphertext operations across multiple chips, sig-
nificantly reducing per-chip compute and storage resources
required. This helps Cinnamon achieve large speedups while
keeping individual chip sizes relatively small.

4.5.1 Hardware Architecture Overview. Cinnamon’s
scale out architecture is composable and horizontally scaled
across multiple chips based on the needs of the encrypted
program. Figure 9 shows an overview of the architecture.
Scale-out Architecture: Cinnamon presents two main
topologies based on the number of chips. First, for configura-
tions up to eight chips Cinnamon leverages a ring topology
as shown in Figure 9(a). A ring topology is sufficient because
most of the communication involves all the chips either for
broadcast or aggregation operations. This means that none of
the links on a chip need to transfer data that is not intended
for it as a receiver. This allows us to use the full capacity
of the network for useful work. Furthermore, Cinnamon in-
troduces a switch architecture for scaling to twelve chips,
as shown in Figure 9(b). Similar to recent multi-GPU de-
signs using NVLink and NVSwitch [50], the switch topology
allows any two pairs of chips to communicate simultane-
ously. Furthermore, the interconnect provides broadcast and
aggregation primitives similar to [49].
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Figure 9. Cinnamon scale-out architecture shows: (a) Cin-
namon with eight chips connected over a ring interconnect,
(b) Cinnamon scaling to twelve chips with a switch intercon-
nect, (c) Cinnamon’s organization composed of four 256 lane
clusters, (d) the logical organization of a Cinnamon chip.

Chip Architecture: The design of Cinnamon is based on
the vector architecture from CraterLake [56]. However, Cin-
namon introduces a novel base conversion unit (BCU) that
significantly shrinks the size of the BCU while achieving the
same performance, thus providing major end-to-end area,
power and cost savings for the Cinnamon chips. Figure 9(c)
shows the organization of a Cinnamon chip that is split into
four compute clusters. Each compute cluster implements
pipelined vector functional units. The vector width of the
functional units is weighted according to the frequency of
occurrence of the instructions in the programs. The chip
further includes four HBM2E stacks of 256 GB/s and two
network PHYs of 256 GB/s. Figure 9(d) show the logical or-
ganization, composed of the functional units along with the
register file and the memory and network interfaces. The
Cinnamon architecture contains the following functional
units: NTT, transpose, add, multiply, PRNG, base conversion,
Barrett Reduction and RNS Resolution. Cinnamon adopts a
28 bit data path similar to CraterLake and uses [47, 55] to
design FHE friendly modular multipliers to reduce area and
power.

4.6 Instruction Set Architecture
Cinnamon introduces a vector ISA that operates on limbs.
Each register value stores a limb, that is, a 28-bit wide vector
of 64K elements. This allows Cinnamon to standardize all
ISA instructions and register file accesses to operate on a
uniform vector size. Furthermore, the Cinnamon ISA also
supports variants of add, subtract, and multiply instructions
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Figure 10. Cinnamon’s base conversion unit.

with one operand as a scalar value to eliminate the expansion
of scalars to vector values that would otherwise consume
valuable bandwidth and on chip storage. The ISA also con-
tains instructions for inter-chip communication.

4.7 Space-optimized Base Conversion Unit
Cinnamon introduces a microarchitectural design for a base
conversion unit (BCU) to reduce area and power while re-
taining performance. The base conversion unit is by far one
of the largest functional units in an FHE accelerator. For
example, in CraterLake [56], the base conversion unit ac-
counts more than a third of the total chip area (158𝑚𝑚2 out
of 472𝑚𝑚2). Therefore, reducing the size of the BCU results
in significant reduction in overall chip area, cost, and power.
Recall the description of base conversion from Section 2.

In general, a base conversion operation can be performed
to convert any number of input bases to any number of
output bases. Prior work [56] designs for this case. Thus,
they implement a multiply accumulate buffer with the num-
ber of multipliers and SRAM buffer size proportional to the
maximum number of output limbs.

However, FHE accelerators do not need to support general
base conversion. This is because in FHE workloads, all base
conversion operations are performed from a small number
of input limbs to a much larger set of output limbs. We
exploit this observation to design a base conversion unit in
which the number of multipliers and SRAM buffer size is
proportional to the number of input limbs. This design has
two advantages: (i) the number of multipliers and SRAM
buffers is significantly reduced. (ii) the SRAM buffers only
need to be single ported as they are either only read from or
written into, unlike an output buffered design that requires
double ported buffers to read, accumulate and write back.
Figure 10 shows the Cinnamon BCU, which is a vector

unit composed of several lanes. We zoom into one lane to
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show the details of its microarchitecture. Each lane contains
a set of limb buffers, (depicted by 𝑎[:] [0] . . . ) and a base con-
version factor table (represented by 𝐵 [0] . . . ). The buffers
are attached to modular multipliers and adders to perform
a multiply accumulate operation. The Cinnamon base con-
version unit operates in two stages. In stage one, the factor
table is loaded with the factors for a particular base conver-
sion and coefficients of the input limbs are written into their
respective limb buffer. Once all the input limbs have been
written, stage 1 is over. In stage 2, coefficients of an output
limb are generated by performing a multiply and accumulate
between the input limbs’ coefficients and their respective
base conversion factors. As the multipliers and adders are
pipelined, each lane produces one output coefficient every
cycle. This process is repeated for all the other output limbs.
Once all the required output limbs are generated, the buffers
and factor tables can be reset for the next base conversion.

In Cinnamon, we set the maximum number of input bases
in our BCU to 13 as this allows Cinnamon to implement
all keyswitching in up to four digits. Further, we reduce
the number of base conversion lanes down from 256 to 128
per cluster. This approach trades off some throughput but
leads to halving the logic area and power of the BCU. These
optimizations allow our optimized BCU to reduce the per
cluster multipliers and SRAM buffers required by [56] from
15K to 1.6K and 3.31MB to 0.71 MB respectively.

5 Implementation
Software We build the Cinnamon DSL in python and the
Cinnamon compiler in C++. The frontend of the compiler
is forked from EVA [18] while we built the entire backend
(polynomial IR and onwards) in about 15,000 lines of code.
HardwareWe implemented the components of Cinnamon
in RTL and synthesised them in a commercial 22nm PDK.We
use a commercial memory compiler to compile the SRAMs
used. We target a clock frequency of 1GHz for all functional
units. We use [32] to estimate the data of the PHY nodes.
Table 1 lists the area for each of the components. Cinnamon
implements fully pipelined automorphism and four step NTT
functional units using the design in CraterLake [56] and uses
the base conversion unit (BCU) from Section 4.7. Finally,
Cinnamon incorporates 4 HBM2E stacks with bandwidth of
512GB/s providing a total bandwidth of 2TB/s. We assume
a bandwidth of 256GB/s on each network interface. Each
chip has a vector register file capacity of 56MB. Based on the
synthesis results, a single Cinnamon chip requires a die area
of 223.18mm2 at 22nm and a total power of 190W.

6 Methodology
We use the CinnamonDSL to program FHEmachine learning
models and leverage the Cinnamon compiler infrastructure
to compile instruction streams for the Cinnamon scale-out
architecture.We built a cycle-accurate simulator tomodel the

Component Area (mm2)
NTT 34.08

Base Conversion Unit 14.12
Rotation 2.48
Addition 0.4
Multiply 2.55
Transpose 3.56
PRNG 5.72

Barrett Reduction 1.04
RNS Resolve 1.33

Total FU Area (2xAdd, 2xMul, 2xPRNG,
+ 1x Remaining FUs) 82.55

Base Conversion Unit Buffers (2.85MB) 11.44
Register File (56 MB) 80.9
4x HBM PHY Nodes 38.64

2x Network PHY Nodes 9.66
Total Chip Area 223.18

Table 1. Component wise Area breakdown.

Cinnamon hardware architecture using timing information
from the synthesized Cinnamon RTL.

6.1 Configurations
We evaluated the following variants of Cinnamon:
Cinnamon-4 and Cinnamon-8, a scale-out architecture
with 4 and 8 Cinnamon chips with a ring interconnect
and Cinnamon-12, a 12 chip configuration with a switch
interconnect. These configurations are based on the
Cinnamon microarchitecture described in Section 5 and
Table 1. We also evaluate a single large monolithic chip
design Cinnamon-M, which is a Cinnamon chip scaled
up to a register file of 224MB, 8 clusters, 2 NTT units, 2
Transpose Units, 2 BCU buffers, 5 multiply and 5 add units,
and an increased BCU block size of 32. This chip has an area
of about 719.78𝑚𝑚2 and represents a single monolithic chip
that is similar in resources as Cinnamon-4. All benchmarks
evaluated on Cinnamon-M are independently optimized
to run on a single chip. We compare Cinnamon with
recent state-of-the-art FHE architectures CraterLake [56],
ARK [36], and CiFHER [38] using their best reported
performance results.

6.2 Benchmarks and Applications
We evaluate Cinnamon with the following benchmarks and
applications. All benchmarks are implemented at a 128-bit
security and use a ring dimension of 𝑁 = 64𝐾 . To test the
correctness of our compiler and benchmark implementation,
we built a CPU emulator for the Cinnamon ISA and used it
to run all the benchmarks.
Bootstrapping [30] takes in a single ciphertext at level 𝑙 = 2,
raises it to level 𝑙 = 51 and consumes 36 levels to bootstrap
the ciphertext, leaving 𝑙𝑒 𝑓 𝑓 = 13 levels for the application.
Resnet implements a ResNet-20 CNN in FHE [43]. We eval-
uated the time taken to complete an inference on a single
32x32 encrypted image from the CIFAR-10 dataset.



Cinnamon: A Framework for Scale-Out Encrypted AI ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

HELR implements logistic regression training [42] with a
mini batch block size of 256 on the MNIST data set. We
perform training for 30 iterations.
BERT implements a BERT-Base transformer model infer-
ence. We use the techniques presented in [65] to implement
softmax, gelu, and tanh functions and Newton-Raphson for
division and inverse square roots. We report the time taken
for a single encrypted inference on a 128 token input. This
benchmark is much larger than any of the other benchmarks
and highlights the opportunities for program-level paral-
lelism. Cinnamon is the first work that explores the perfor-
mance of large transformer models on FHE architectures.

7 Evaluation
Our evaluation sheds light on the following aspects:
• The performance scaling of Cinnamon on ML models
• The cost and performance-per-dollar of Cinnamon
• The impact of program-level and limb-level parallelism
• The scalability of our limb-level parallelism techniques
• The utilization of Cinnamon and how different parameters
affect its performance

7.1 Performance Results
Table 2 reports the execution time of Cinnamon and Figure 11
shows the normalized speedups for different architectures
and benchmarks. As the results show, Cinnamon’s paral-
lelization techniques and scale-out architecture is highly
effective in improving the performance of bootstrap as well
as real world machine learning workloads.

Comparing Cinnamon-4 to Cinnamon-M, we see that Cin-
namon achieves its goal to match the performance of a large
monolithic chip using 4 smaller Cinnamon chips. Further-
more, we see that the parallelization techniques introduced
by Cinnamon lead to performance improvements. On aver-
age Cinnamon improves the performance of bootstrap and
small models by 2.93×, 1.75×, and 2.45× compared to state-
of-the-art architectures CraterLake, ARK, and CiFHER.
Cinnamon is the first work to target larger models such

as BERT and therefore we only compare the results based
on Cinnamon configurations. We see that the performance
of Cinnamon is scalable as Cinnamon-12 achieves a speedup
of 36, 600× compared to a 48-core Intel Xeon with a 256GB
Memory CPU bringing down inference time from 17 hours
to 1.67 seconds, thus enabling new opportunities for privacy-
preserving machine learning. Using the Cinnamon frame-
work to create parallel streams to parallelize the attention
layer (6 parallel ciphertexts) and the GELU layer (12 parallel
ciphertexts) enables further scaling. Together these represent
about 85% of the program. Cinnamon uses groups of four
chips for parallel bootstrap and then creates two and three
independent streams for each group for the Cinnamon-8 and
Cinnamon-12 configurations respectively. The results show
that Cinnamon-8 achieves a 1.8× speedup and Cinnamon-12
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Figure 11. Normalized speedup of Cinnamon.
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Figure 12. Relative Performance per Dollar.

achieves a 2.28× speedup compared to a large monolithic
Cinnamon-M chip inline, with the available parallelism.

7.2 Cost and performance-per-dollar analysis
In this section we explore how Cinnamon reduces cost and
achieves high performance-per-dollar for FHE programs. Ac-
tual manufacturing yield is a closely guarded industry secret
and depends on several factors such as process technology
maturity and ASIC design. However, we make a very opti-
mistic assumption of defect density 𝐷0 = 0.2𝑐𝑚−2 and defect
clustering 𝛼 = 3, leveraging prior work [60]. We assume a
300𝑚𝑚 wafer and use the formula from [60] and publicly
available data from semiconductor companies [21, 48] to es-
timate yield and wafer costs. We report the results in Table 3.
The results show that Cinnamon’s strategy of splitting

resources across chips enables Cinnamon to reduce the size
of each individual chip to obtain a higher yield of 66% com-
pared to the monolithic chip accelerator Cinnamon-M’s 30%.
Cinnamon chips also achieve a much higher yield compared
to Craterlake and ARK. CiFHER leverages chiplets and a 7nm
technology resulting in a high per-chiplet yield. Note that
the cost of CiFHER is a single chiplet and thus underesti-
mated. It does not include the cost of the chiplet interposer,
as we were unable to obtain any publicly available data.
We use the performance data and tape-out costs to esti-

mate performance-per-dollar. Figure 12 shows the results.
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Benchmark Cinnamon-M Cinnamon-4 Cinnamon-8 Cinnamon-12 CraterLake CiFHER ARK CPU
1 Large Monolithic Chip 4 Chips 8 Chips 12 Chips

Bootstrap (ms) 1.87 1.98 1.71 1.63 6.33 5.58 3.5 33s
Resnet (ms) 105.94 94.52 73.85 70.57 321.26 189 125 17.5min
HELR (ms) 73.20 87.61 68.74 48.76 121.91 106.88 - 14.9min
BERT (s) 3.83 3.83 2.07 1.67 - - - 1037.5min

Table 2. Execution time

Accelerator Die area (mm2) Process Yield (%) Wafer Price ($/mm2) Yield Normalized Cost($)
ARK 418.3 7nm 48% 57500 50M
Cifher 47.08 7nm 90% 57500 3.5M

Craterlake 472 14nm 44% 23000 25M
Cinnamon-M 719.78 22nm 31% 10500 25M
Cinnamon 223.18 22nm 66% 10500 3.5M

Table 3. Manufacturing yield and estimated tape-out cost of FHE architectures.

For bootstrap and small ML programs we see that Cinnamon-
4 provides significant improvements in performance-per-
dollar of 5× and 2.68× on average compared to state-of-the-
art monolithic designs like CraterLake and chiplet architec-
tures like CiFHER. Smaller programs do not exhibit enough
parallelism for larger architectures such as Cinnamon-8 and
Cinnamon-12 and hence they provided limited benefits. How-
ever, looking into larger models such as BERT we see that all
configurations provide major improvements in performance-
per-dollar compared to a large monolithic Cinnamon-M chip.

7.3 Program and Limb-level Parallelism
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Figure 13. Comparison of various keyswitching techniques
for bootstrapping on Cinnamon-4

To address the communication bottleneck of limb-level
parallelism, Cinnamon proposes two new parallel keyswitch-
ing algorithms: input broadcast and output aggregation along
with compiler keyswitch passes that perform reordering and
batching optimizations to minimize inter-chip communica-
tion (Section 4.3.1). To better understand the effectiveness of
these techniques, we show their speedups over a single-chip
implementation.
Speedup Breakdown: Figure 13 shows the following con-
figurations for bootstrap over different link bandwidth con-
figurations: Sequential is the standard implementation of
keyswitching running on a single Cinnamon chip. This is the

baseline configuration. CiFHER uses the parallel keyswitch-
ing presented in [38]. Input Broadcast uses Input Broadcast
Keyswitching to parallelize keyswitching. Input Broadcast +
Pass uses Input Broadcast Keyswitching coupled with Cin-
namon’s compiler pass for reordering and communication
batching (Pass). Cinnamon Keyswitch + Pass relies on the Cin-
namon compiler to select between Cinnamon’s algorithms
of input broadcast and output aggregation keyswitching and
perform reordering operations to minimize communication.
Finally, Cinnamon Keyswitch + Pass + Program parallelism
uses Cinnamon’s program-level parallelism stream features
on top of the Cinnamon Keyswitch + Pass to create two par-
allel streams mapped to two chips each to compute the two
homomorphic mod computations in parallel.
At a 256 GB/s link bandwidth, we observe that CiFHER

results in a 2.14× slowdown over Sequential. Input Broadcast
Keyswitching + Pass provides a 2.34× improvement over se-
quential. As explained in 4.3.1, Input Broadcast Keyswitching
reduces inter-chip communication and provides significant
benefits when combined with Pass as it is able to effectively
batch communication across program patterns. Cinnamon
Keyswitch + Pass achieves an improvement of 3.22× over se-
quential. This further speedup is because of the introduction
of output aggregation keyswitching that is complementary
to input broadcast keyswitching and enables optimizing pro-
gram patterns that input broadcast keyswitching cannot
optimize. Finally, Cinnamon Keyswitch +Pass + Program Par-
allelism provides a 4.18× speed up over sequential by adding
the Cinnamon compiler’s parallel stream feature. Increasing
the link bandwidth to 512𝐺𝐵/𝑠 , we see that our paralleliza-
tion techniques result in a 5× speedup over the sequential
implementation. At 1024𝐺𝐵/𝑠 , we see little improvement
for Cinnamon, as it has been able to completely eliminate
the network bottleneck at 512𝐺𝐵/𝑠 and the design becomes
compute-bound.
Overall, the results show that the scale-out approach

of Cinnamon with our proposed keyswitching algorithms,
together with our compiler optimizations across multiple
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keyswitching operations, lead to effective parallelization
even at relatively low bandwidth.

7.4 Comparing Keyswitching Implementations
In this section, we compare Cinnamon’s parallel keyswitch-
ing algorithms: input broadcast and output aggregation
keyswitching to CiFHER’s parallel keyswitching.
CiFHER’s keyswitching algorithm requires broadcasts at

both the mod up and mod down steps. Whereas Cinnamon’s
keyswitching algorithms limit the communication in paral-
lel keyswitching to only one point: either the beginning or
the end of keyswitching. This is done because reordering
and batching optimizations can only batch one of the com-
munication operations. We show through algorithmic and
empirical evaluation how Cinnamon’s algorithms provide
significant gains over CiFHER.
Algorithmic Analysis: Let us consider the first pattern
from Section 4.3.1: 𝑟 different rotations on the same cipher-
text. In this case, CiFHER requires 3 broadcasts for each
of the 𝑟 keyswitches. Batching can optimize the broadcast
at the mod up step, but each keyswitch would still require
the 2 broadcasts at the mod down step. Thus, CiFHER re-
quires 𝑂 (𝑟 ) broadcasts for 𝑟 keyswitches. In contrast, Input
Broadcast Keyswitching requires just one broadcast at the
beginning of each keyswitch, which can be batched to just
one broadcast for the whole batch of 𝑟 rotations. As a result,
Cinnamon requires 1 broadcast for 𝑟 rotations.
Similarly, for the second program pattern: 𝑟 different

rotations on 𝑟 different ciphertexts followed by aggrega-
tion, CiFHER would require 3 broadcasts for each of the
𝑟 keyswitches. Batching can optimize the broadcast at the
mod down step, but each keyswitch would still require the
broadcasts at the mod up step. Thus, CiFHER requires 𝑂 (𝑟 )
broadcasts for 𝑟 keyswitches. In contrast, using output ag-
gregation keyswitching, requires 2 aggregations at the end
of each keyswitch. This can be batched to just two aggrega-
tions for the whole batch. Thus, Cinnamon only requires 2
aggregations for the 𝑟 rotations.
Overall, Cinnamon provides a significant algorithm im-

provement over prior CiFHER.
Empirical Analysis: We evaluate how CiFHER and Cinna-
mon’s keyswitching techniques perform with batching en-
abled on the Cinnamon-4 configuration for the bootstrapping
benchmark. As expected by the algorithmic analysis above,
Cinnamon’s keyswitching algorithms reduce the inter-chip
communication by 2.25× over CiFHER with batching, re-
sulting in a 1.94× speedup. When program parallelism is
introduced to both Cinnamon and CiFHER, the speedup of
Cinnamon improves to 2.11× over CiFHER.

7.5 Scalability of Limb Level Parallelism
The current bootstrap implementation of Cinnamon re-
freshes 13 levels of compute. This configuration aligns with
prior work [36, 56] and simplifies the direct comparison. In

practice, different bootstrap implementations can tune the
refresh levels by trading-off compute cost. This creates an
interesting trade-off between the cost of each bootstrap and
the frequency of bootstrapping. DaCapo [16] is a recent com-
piler that explores this trade-off. To this end, in this paper,
we show how Cinnamon’s limb level parallelism techniques
scale with bootstrap implementations that refresh more lev-
els. Specifically, we consider Bootstrap-21, a configuration
of bootstrapping that refreshes 21 levels and compare it to
Bootstrap-13 in Figure 14.
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Figure 14. Speedup for Bootstrap-13 and Bootstrap-21
As we can see in the figure, Bootstrap-13 results in a

4.18× speedup on Cinnamon-4. It increases modestly to
4.78× on Cinnamon-8 and 4.98× on Cinnamon-12. This
is because communication costs become the limiting fac-
tor and additional parallelism is not beneficial. However,
Bootstrap-21 yields speedups of 5.28× on Cinnamon-4, 8.12×
on Cinnamon-8, and 8.81× on Cinnamon-12. The speedups
increase because this configuration has almost 2× the com-
pute of Bootstrap-13 and benefits more from the extra paral-
lelism and resources provided by scaling to Cinnamon-8. This
shows that Cinnamon’s limb level parallelism techniques can
be used to speedup bootstrap implementations that refresh
more levels and opens the door for new research that ex-
plores the frequency-cost trade-off of bootstrapping through
parallelism.

7.6 Hardware Utilization and Sensitivity Study
Figure 15 shows the utilization of Cinnamon across different
architectures and compute, memory bandwidth, and network
bandwidth resources. Compute utilization is reported as the
number of cycles in which a unit is actively processing data.
We report the area-weighted average of all FUs. Memory and
Network utilization is the cycles memory or the network
is active. For Cinnamon-4, we show the average results of
all the benchmarks and for Cinnamon-8 and 12, we show
the results on BERT. As the results show, Cinnamon-4 is
able to achieve a high utilization close to 60% for compute,
memory bandwidth and network bandwidth resources across
benchmarks. Cinnamon-8 also achieves a high utilization
of compute, memory and bandwidth for BERT. Cinnamon-
12 starts to witness lower compute and memory utilization
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as the program has been parallelized and the narrower sec-
tions that have less parallelism become a larger part of the
program.
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Figure 15. Cinnamon Utilization Results
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Figure 16. Cinnamon Sensitivity Results

Figure 16 shows the sensitivity of different Cinnamon con-
figurations to halving and doubling the register file size, link
and memory bandwidths, and vector width. For Cinnamon-4,
we take the geomean of speedups across the 4 benchmarks.
For Cinnamon-8 and Cinnamon-12, we report the results of
the BERT benchmark. We observe that halving any of the
resources of a configuration results in a slowdown of about
20 − 40%, with a geomean of 32%. However, on doubling any
resource, we observe modest speedups ranging from 2− 20%
with a geomean of 10%. This shows that Cinnamon chips
are appropriately sized to deliver high performance in all
configurations and applications.

8 Other Related Work
FHEAccelerators: FAB [4] and F1[55] were some of the first
accelerators, but they did not accelerate FHE computations
that require bootstrapping. HEAP [3] is an FPGA accelerator
that uses scheme switching between CKKS and TFHE [17]
for bootstrapping but can’t efficiently support large models
due to quadratic growth in the cost of scheme switching.

Sharp [35] proposes modifying FHE application to a preci-
sion of 36 bits to improve the utilization of the multiplicative
budget. This enables applications to reduce the frequency of

bootstrapping. However, Sharp has been tested only on small
ML models that could fit in 36 bits. For BERT, we required
about 50-80 bits of precision, and also as BitPacker [57] notes,
some othermodels too require scales higher than 36 bits. Nev-
ertheless, the optimization techniques presented in Sharp
are orthogonal to the optimizations presented in Cinnamon.
Cinnamon proposes speeding applications by exploiting par-
allelism to scale, and all the optimizations presented in Sharp
can be used in conjunction with our techniques.
Precision optimizations of FHE programs: Bit-
Packer [57] enables decoupling of scaling factors in an FHE
programs from the arithmetic bit width of the underlying
FHE accelerator to better utilize the multiplicative budget
and reduce bootstrapping frequency. These techniques can
also be used in conjunction with Cinnamon.
CPU/GPU Acceleration of FHE: [1, 2, 5, 58] are popular
open source libraries for running FHE programs on CPUs. [9]
optimizes FHE using AVX instructions. [22, 33] propose GPU
acceleration of FHE.
Compiler Infrastructure: HEIR [27] is a compiler
toolchain for FHE. It aims to standardize intermediate repre-
sentations for FHE. Cinnamon’s IR, compiler optimizations,
and keyswitching algorithms can be used to extend HEIR.
Further, the Cinnamon ISA can serve as a compilation target
for the HEIR framework.
Hybrid Protocols: Cheetah [53] is an accelerator for Hybrid
HE-MPC [34]. Such schemes avoid bootstrapping but incur
high server-client communication costs. CHOCO-TACO [62]
accelerates the generation of ciphertexts and evalkeys on
the client side.

9 Conclusion
This paper presented Cinnamon, a framework for scale-out
encrypted computing of state-of-the-art ML workloads in
FHE. Cinnamon focused on exploiting parallelism along two
dimensions, program and limb level, and composing them
together. By cutting across algorithms, compilers, and archi-
tecture Cinnamon was able to split large FHE computation
over multiple small chips. As a result, Cinnamon is able to
achieve the twin benefits of fast FHE computation and re-
duced costs. Additionally, Cinnamon demonstrates for the
first time that a language model like BERT can be practically
implemented in FHE enabling new opportunities for privacy
preserving machine learning.

Acknowledgments
We would like to thank the anonymous reviewers; shepherd
Mingyu Gao; Qi Pang and Trevor Leong for help with bench-
marks; and Siddharth Das, Ken Mai and Tathagatha Srimani
for help with the synthesis. This research was funded by a
CMU CyLab grant and NSF grants CCF 2217016 and CNS
2238671.



Cinnamon: A Framework for Scale-Out Encrypted AI ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

References
[1] 2023. HEAAN. Online: https://github.com/snucrypto/HEAAN.
[2] 2023. Lattigo v5. Online: https://github.com/tuneinsight/lattigo. EPFL-

LDS, Tune Insight SA.
[3] Rashmi Agrawal, Anantha Chandrakasan, and Ajay Joshi. 2024. HEAP:

A Fully Homomorphic Encryption Accelerator with Parallelized Boot-
strapping. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). 756–769. https://doi.org/10.1109/
ISCA59077.2024.00060

[4] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi. 2023. FAB: An FPGA-based
Accelerator for Bootstrappable Fully Homomorphic Encryption. In
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 882–895.

[5] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce
Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt,
Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah,
Yuriy Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor,
Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and
Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homomorphic
Encryption Library. Cryptology ePrint Archive, Paper 2022/915.
https://eprint.iacr.org/2022/915

[6] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca.
2016. A Full RNS Variant of FV like Somewhat Homomorphic
Encryption Schemes. Cryptology ePrint Archive, Paper 2016/510.
https://eprint.iacr.org/2016/510

[7] L. A. Belady. 1966. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal 5, 2 (1966), 78–101. https:
//doi.org/10.1147/sj.52.0078

[8] Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin,
and Zhenyu Guan. 2023. HE3DB: An Efficient and Elastic Encrypted
Database Via Arithmetic-And-Logic Fully Homomorphic Encryption.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security. 2930–2944.

[9] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe D.M. de Souza, and
Vinodh Gopal. 2021. Intel HEXL: Accelerating Homomorphic En-
cryption with Intel AVX512-IFMA52. In Proceedings of the 9th on
Workshop on Encrypted Computing & Applied Homomorphic Cryp-
tography (Virtual Event, Republic of Korea) (WAHC ’21). Associa-
tion for Computing Machinery, New York, NY, USA, 57–62. https:
//doi.org/10.1145/3474366.3486926

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012.
(Leveled) Fully Homomorphic Encryption without Bootstrapping.
In Proceedings of the 3rd Innovations in Theoretical Computer Sci-
ence Conference (Cambridge, Massachusetts) (ITCS ’12). Association
for Computing Machinery, New York, NY, USA, 309–325. https:
//doi.org/10.1145/2090236.2090262

[11] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. 2019. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In 28th USENIX Security Sym-
posium (USENIX Security 19). USENIX Association, Santa Clara,
CA, 249–266. https://www.usenix.org/conference/usenixsecurity19/
presentation/canella

[12] Capital One. [n. d.]. Information on the Capital One cyber incident.
https://www.capitalone.com/digital/facts2019/.

[13] Jung Cheon, Han Kyoohyung, Andrey Kim, Miran Kim, and Yongsoo
Song. 2018. Bootstrapping for Approximate Homomorphic Encryption.
360–384. https://doi.org/10.1007/978-3-319-78381-9_14

[14] Jung Cheon, Han Kyoohyung, Andrey Kim, Miran Kim, and Yongsoo
Song. 2018. Bootstrapping for Approximate Homomorphic Encryption.
360–384. https://doi.org/10.1007/978-3-319-78381-9_14

[15] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017.
Homomorphic encryption for arithmetic of approximate numbers. In

Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference
on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23. Springer,
409–437.

[16] Seonyoung Cheon, Yongwoo Lee, Dongkwan Kim, Ju Min Lee, Sunchul
Jung, Taekyung Kim, Dongyoon Lee, and Hanjun Kim. 2024. DaCapo:
Automatic Bootstrapping Management for Efficient Fully Homomor-
phic Encryption. In 33rd USENIX Security Symposium (USENIX Secu-
rity 24). USENIX Association, Philadelphia, PA, 6993–7010. https:
//www.usenix.org/conference/usenixsecurity24/presentation/cheon

[17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. August 2016. TFHE: Fast Fully Homomorphic Encryption
Library. https://tfhe.github.io/tfhe/

[18] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim
Laine, and Madan Musuvathi. 2020. EVA: an encrypted vector arith-
metic language and compiler for efficient homomorphic computa-
tion. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’20). ACM.
https://doi.org/10.1145/3385412.3386023

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805

[20] European Parliament and Council of the European Union. [n. d.]. Reg-
ulation (EU) 2016/679 of the European Parliament and of the Council.
https://data.europa.eu/eli/reg/2016/679/oj

[21] EuroPracticeIC. 2024. EUROPRACTICE | Schedules 2024. https:
//europractice-ic.com/schedules-prices-2024/

[22] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and
Mingzhe Zhang. 2023. TensorFHE: Achieving Practical Computation
on Encrypted Data Using GPGPU. In 2023 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). 922–934.
https://doi.org/10.1109/HPCA56546.2023.10071017

[23] Federal Trade Commission. [n. d.]. Equifax Data Breach Settle-
ment. https://www.ftc.gov/enforcement/refunds/equifax-data-breach-
settlement.

[24] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal
Lattices. In Proceedings of the Forty-First Annual ACM Symposium
on Theory of Computing (Bethesda, MD, USA) (STOC ’09). Associa-
tion for Computing Machinery, New York, NY, USA, 169–178. https:
//doi.org/10.1145/1536414.1536440

[25] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and JohnWernsing. 2016. CryptoNets: Applying Neu-
ral Networks to Encrypted Data with High Throughput and Accuracy.
In Proceedings of The 33rd International Conference onMachine Learning
(Proceedings of Machine Learning Research, Vol. 48). PMLR, New York,
New York, USA, 201–210. https://proceedings.mlr.press/v48/gilad-
bachrach16.html

[26] Eric Goldman. 2020. An introduction to the california consumer pri-
vacy act (ccpa). Santa Clara Univ. Legal Studies Research Paper (2020).

[27] Google. [n. d.]. HEIR: Homomorphic Encryption Intermediate Repre-
sentation. https://heir.dev/

[28] Shai Halevi and Victor Shoup. 2020. Design and implementation of
HElib: a homomorphic encryption library. Cryptology ePrint Archive,
Paper 2020/1481. https://eprint.iacr.org/2020/1481

[29] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park.
2018. Efficient Logistic Regression on Large Encrypted Data. Cryptol-
ogy ePrint Archive, Paper 2018/662. https://eprint.iacr.org/2018/662

[30] Kyoohyung Han and Dohyeong Ki. 2019. Better Bootstrapping for
Approximate Homomorphic Encryption. Cryptology ePrint Archive,
Paper 2019/688. https://eprint.iacr.org/2019/688

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 770–778. https:
//doi.org/10.1109/CVPR.2016.90

https://github.com/snucrypto/HEAAN
https://github.com/tuneinsight/lattigo
https://doi.org/10.1109/ISCA59077.2024.00060
https://doi.org/10.1109/ISCA59077.2024.00060
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2016/510
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/3474366.3486926
https://doi.org/10.1145/3474366.3486926
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.capitalone.com/digital/facts2019/
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://www.usenix.org/conference/usenixsecurity24/presentation/cheon
https://www.usenix.org/conference/usenixsecurity24/presentation/cheon
https://tfhe.github.io/tfhe/
https://doi.org/10.1145/3385412.3386023
https://arxiv.org/abs/1810.04805
https://data.europa.eu/eli/reg/2016/679/oj
https://europractice-ic.com/schedules-prices-2024/
https://europractice-ic.com/schedules-prices-2024/
https://doi.org/10.1109/HPCA56546.2023.10071017
https://www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
https://www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://heir.dev/
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2018/662
https://eprint.iacr.org/2019/688
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Siddharth Jayashankar, Edward Chen, Tom Tang, Wenting Zheng, & Dimitrios Skarlatos

[32] Sangyun Hwang, Taekyung Yeo Kwanyeob Chae, Sangsoo Park, Won
Lee, Shinyoung Lee, Soo-Min Lee, Kihwan Seong, Eunkyoung Ha,
Eunsu Kim, Jihun Oh, Kyoung-Hoi Koo, Sanghune Park, and Jongshin
Shin. 2024. A 3.2 Gbps/pin HBM2E PHY with Low Power I/O and
Enhanced Training Scheme for 2.5D System-in-Package Solutions. In
HotChips’33.

[33] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and
Younho Lee. 2021. Over 100x Faster Bootstrapping in Fully Homomor-
phic Encryption through Memory-centric Optimization with GPUs.
Cryptology ePrint Archive, Paper 2021/508. https://eprint.iacr.org/
2021/508

[34] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
2018. GAZELLE: A Low Latency Framework for Secure Neural Net-
work Inference. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 1651–1669. https://www.
usenix.org/conference/usenixsecurity18/presentation/juvekar

[35] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan
Kim, and Jung Ho Ahn. 2023. SHARP: A Short-Word Hierarchical
Accelerator for Robust and Practical Fully Homomorphic Encryption.
In Proceedings of the 50th Annual International Symposium on Computer
Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 18, 15 pages. https://doi.org/
10.1145/3579371.3589053

[36] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu,
John Kim, and Jung Ho Ahn. 2022. ARK: Fully Homomorphic Encryp-
tion Accelerator with Runtime Data Generation and Inter-Operation
Key Reuse. In 2022 55th IEEE/ACM International Symposium onMicroar-
chitecture (MICRO). 1237–1254. https://doi.org/10.1109/MICRO56248.
2022.00086

[37] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. 2020.
Semi-Parallel logistic regression for GWAS on encrypted data. BMC
Medical Genomics 13, 7 (2020), 99. https://doi.org/10.1186/s12920-020-
0724-z

[38] Sangpyo Kim, Jongmin Kim, Jaeyoung Choi, and Jung Ho Ahn. 2024.
CiFHER: A Chiplet-Based FHE Accelerator with a Resizable Structure.
arXiv:2308.04890 [cs.AR]

[39] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung,
John Kim, Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: an accelerator
for bootstrappable fully homomorphic encryption. In Proceedings of
the 49th Annual International Symposium on Computer Architecture
(ISCA ’22). ACM. https://doi.org/10.1145/3470496.3527415

[40] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In IEEE Symposium on Security and Privacy (S&P).

[41] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael B. Abu-Ghazaleh. 2018. Spectre Returns! Speculation
Attacks using the Return Stack Buffer. In 12th USENIX Workshop on
Offensive Technologies, WOOT 2018, Baltimore, MD, USA, August 13-14,
2018. USENIX Association.

[42] Han Kyoohyung, Seungwan Hong, Jung Cheon, and Daejun Park.
2019. Logistic Regression on Homomorphic Encrypted Data at Scale.
Proceedings of the AAAI Conference on Artificial Intelligence 33 (07
2019), 9466–9471. https://doi.org/10.1609/aaai.v33i01.33019466

[43] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun
Eom, Maxim Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo,
Young-Sik Kim, and Jong-Seon No. 2021. Privacy-Preserving Ma-
chine Learning with Fully Homomorphic Encryption for Deep Neu-
ral Network. CoRR abs/2106.07229 (2021). arXiv:2106.07229 https:
//arxiv.org/abs/2106.07229

[44] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security’18.

[45] Natasha Lomas. [n. d.]. Italy orders ChatGPT blocked citing data
protection concerns. https://techcrunch.com/2023/03/31/chatgpt-
blocked-italy/. Last accessed: 05/28/2023.

[46] Cecily Mauran. [n. d.]. Whoops, Samsung workers accidentally leaked
trade secrets via ChatGPT. https://mashable.com/article/samsung-
chatgpt-leak-details. Last accessed: 05/28/2023.

[47] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2019. Design
and Implementation of a Fast and Scalable NTT-Based Polynomial
Multiplier Architecture. In 2019 22nd Euromicro Conference on Digital
SystemDesign (DSD). 253–260. https://doi.org/10.1109/DSD.2019.00045

[48] MuseSemi. 2024. Muse Semiconductor TSMC University FinFET Pro-
gram Service and Price. https://www.musesemi.com/university-finfet-
program

[49] NVIDIA. [n. d.]. NVIDIA Scalable Hierarchical Aggregation and Reduc-
tion Protocol (SHARP). https://docs.nvidia.com/networking/display/
sharpv300

[50] NVIDIA. [n. d.]. Nvlink. https://www.nvidia.com/en-us/data-center/
nvlink/

[51] NVIDIA. 2024. NVIDIA Blackwell PlatformArrives to Power a NewEra
of Computing. https://nvidianews.nvidia.com/news/nvidia-blackwell-
platform-arrives-to-power-a-new-era-of-computing

[52] Kate Park. [n. d.]. Samsung bans use of generative
AI tools like ChatGPT after April internal data leak.
https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-
ai-tools-like-chatgpt-after-april-internal-data-leak. Last accessed:
05/28/2023.

[53] Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu-Yeon
Wei, Hsien-Hsin S. Lee, and David Brooks. 2020. Cheetah: Optimiz-
ing and Accelerating Homomorphic Encryption for Private Inference.
arXiv:2006.00505

[54] Xuanle Ren, Le Su, Zhen Gu, Sheng Wang, Feifei Li, Yuan Xie, Song
Bian, Chao Li, and Fan Zhang. 2022. HEDA: multi-attribute unbounded
aggregation over homomorphically encrypted database. Proceedings
of the VLDB Endowment 16, 4 (2022), 601–614.

[55] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas De-
vadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez.
2021. F1: A Fast and Programmable Accelerator for Fully Homomor-
phic Encryption. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21).
Association for Computing Machinery, New York, NY, USA, 238–252.
https://doi.org/10.1145/3466752.3480070

[56] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan
Manohar, Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris
Peikert, and Daniel Sanchez. 2022. CraterLake: A Hardware Ac-
celerator for Efficient Unbounded Computation on Encrypted Data.
In Proceedings of the 49th Annual International Symposium on Com-
puter Architecture (New York, New York) (ISCA ’22). Association
for Computing Machinery, New York, NY, USA, 173–187. https:
//doi.org/10.1145/3470496.3527393

[57] Nikola Samardzic and Daniel Sanchez. 2024. BitPacker: Enabling
High Arithmetic Efficiency in Fully Homomorphic Encryption Ac-
celerators. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24). Association
for Computing Machinery, New York, NY, USA, 137–150. https:
//doi.org/10.1145/3620665.3640397

[58] SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA..

[59] Deepraj Soni, Negar Neda, Naifeng Zhang, Benedict Reynwar, Homer
Gamil, Benjamin Heyman, Mohammed Nabeel, Ahmad Al Badawi,
Yuriy Polyakov, Kellie Canida, Massoud Pedram, Michail Maniatakos,
David Bruce Cousins, Franz Franchetti, Matthew French, Andrew
Schmidt, and Brandon Reagen. 2023. RPU: The Ring Processing Unit. In
2023 IEEE International Symposium on Performance Analysis of Systems

https://eprint.iacr.org/2021/508
https://eprint.iacr.org/2021/508
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1145/3579371.3589053
https://doi.org/10.1145/3579371.3589053
https://doi.org/10.1109/MICRO56248.2022.00086
https://doi.org/10.1109/MICRO56248.2022.00086
https://doi.org/10.1186/s12920-020-0724-z
https://doi.org/10.1186/s12920-020-0724-z
https://arxiv.org/abs/2308.04890
https://doi.org/10.1145/3470496.3527415
https://doi.org/10.1609/aaai.v33i01.33019466
https://arxiv.org/abs/2106.07229
https://arxiv.org/abs/2106.07229
https://arxiv.org/abs/2106.07229
https://techcrunch.com/2023/03/31/chatgpt-blocked-italy/
https://techcrunch.com/2023/03/31/chatgpt-blocked-italy/
https://mashable.com/article/samsung-chatgpt-leak-details
https://mashable.com/article/samsung-chatgpt-leak-details
https://doi.org/10.1109/DSD.2019.00045
https://www.musesemi.com/university-finfet-program
https://www.musesemi.com/university-finfet-program
https://docs.nvidia.com/networking/display/sharpv300
https://docs.nvidia.com/networking/display/sharpv300
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://arxiv.org/abs/2006.00505
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1145/3620665.3640397
https://doi.org/10.1145/3620665.3640397
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL


Cinnamon: A Framework for Scale-Out Encrypted AI ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

and Software (ISPASS). 272–282. https://doi.org/10.1109/ISPASS57527.
2023.00034

[60] Dylan Stow, Yuan Xie, Taniya Siddiqua, and Gabriel H. Loh. 2017. Cost-
effective design of scalable high-performance systems using active and
passive interposers. In Proceedings of the 36th International Conference
on Computer-Aided Design (Irvine, California) (ICCAD ’17). IEEE Press,
728–735.

[61] The Verge. [n. d.]. T-Mobile discloses its second data breach so far
this year. https://www.theverge.com/2023/5/2/23707894/tmobile-data-
breach-april-personal-data-pin-hack-security.

[62] McKenzie van der Hagen and Brandon Lucia. 2022. Client-optimized
algorithms and acceleration for encrypted compute offloading. As-
sociation for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3503222.3507737

[63] Wired. [n. d.]. The Snowflake Attack May Be Turning Into One of the
Largest Data Breaches Ever. https://www.wired.com/story/snowflake-
breach-advanced-auto-parts-lendingtree/.

[64] Yinghao Yang, Huaizhi Zhang, Shengyu Fan, Hang Lu, Mingzhe
Zhang, and Xiaowei Li. 2023. Poseidon: Practical Homomorphic
Encryption Accelerator. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 870–881. https:
//doi.org/10.1109/HPCA56546.2023.10070984

[65] Jiawen Zhang, Jian Liu, Xinpeng Yang, Yinghao Wang, Kejia Chen,
Xiaoyang Hou, Kui Ren, and Xiaohu Yang. 2024. Secure Transformer
Inference Made Non-interactive. Cryptology ePrint Archive, Paper
2024/136. https://eprint.iacr.org/2024/136

A Artifact Appendix
A.1 Abstract
Our artifact provides the simulation tool and compiled pro-
grams that we used to evaluate the Cinnamon Framework.
We provide scripts to run the simulations and reproduce the
results of our experiments.

A.2 Artifact check-list (meta-information)
• Run-time environment: Linux with Docker Containers
• Hardware: x86_64 server
• Output: Table 2 and Figures 11, 12, 13 , 14 of the paper
• Experiments: Please refer to section appendix A.5
• Disk space required: 50GB
• Time needed to prepare workflow: 20 minutes
• Time needed to complete experiments 24 hours:
• Code licenses: CC
• Archived : https://doi.org/10.1184/R1/27635106. However,
we recommend using the latest version from docker

A.3 Description
A.3.1 How to access. The container image is avail-
able at https://hub.docker.com/repository/docker/sidjay10/
asplos25_cinnamon_artifact/general. The code is available
at https://github.com/sidjay10/asplos25_cinnamon_artifact/

A.3.2 Software dependencies. We use Docker and pro-
vide a complete docker image that captures all the software
dependencies required to build our simulation infrastructure

A.4 Installation
Build Time: 20 minutes. Please follow the steps in A.5

A.5 Experiment workflow

A.5.1 Overview. We are releasing the Cinnamon simula-
tor along with the benchmarks we compiled for the evalua-
tion. To reproduce our results, follow the steps below.
Step 1: Pull the container image
docker pull sidjay10/asplos25_cinnamon_artifact:v1

Step 2: Run the container.
mkdir -p asplos25_cinnamon_artifact/outputs
cd asplos25_cinnamon_artifact
docker run --rm -it \
-v $(pwd)/outputs:/cinnamon_artifact/outputs \
--name cinnamon \
sidjay10/asplos25_cinnamon_artifact:v1

Step 3: Build the Cinnamon Simulator
docker exec -it cinnamon ./build_cinnamon.sh

This command builds the cinnamon element within the SST
simulator. The rest of the SST simulator is pre-built in the
container image. This command should take about 5minutes.

Step 4: Run the simulations to generate Figure 13
docker exec -it cinnamon \

./run_keyswitch_comparison.sh

This command should take about 10 minutes. When it
completes, it will produce keyswitch_comparison.pdf under
the output folder.

Step 5: Run the simulations to generate Figure 14
docker exec -it cinnamon \

./run_bootstrap_comparison.sh

This command should take about 10 minutes. When it
completes, it will produce bootstrap_comparison.pdf under
the output folder.

Step 6: Run the simulations to generate Figure 11, Figure 12
and Table 2
docker exec -it cinnamon ./run_performance.sh

This command should take about a day. This is because
it runs the simulations for long-running benchmarks.
When it completes, it will produce performance.pdf,
performance_per_dollar.pdf and performance_table.txt
under the outputs folder.

Step 7: Cleanup
docker stop cinnamon

A.6 Evaluation and expected results
The collected plots and tables for the simulations should
match Figures 11, 12, 13 , 14 and Table 2 of the paper.
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A.7 Methodology
Submission, Review, and Badging Methodology:

• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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